

Welcome to django-oscar-paypal’s documentation!

This package provides integration between django-oscar and two of PayPal’s
payment options:

	PayPal Express - Involves redirecting customer’s over to PayPal’s site where
they can choose shipping options and confirm payment using their PayPal
account. The customer is then redirected back to the merchant site where they
confirm the order.

	PayPal PayFlow Pro - Allows you to accept customer payments on your site
without requiring a redirect to PayPal. This allows the customer to pay with
a normal bankcard rather than their PayPal account.

It’s possible to use both of these options individually or at the same time.
Further, it’s possible to use either without Oscar.

Installation

Whichever payment option you wish to use, the package installation instructions
are the same.

Install:

pip install django-oscar-paypal

By default, this won’t install Oscar as well. To install Oscar, run:

pip install "django-oscar-paypal[oscar]"

Finally, add paypal to your INSTALLED_APPS, and run:

python manage.py syncdb

Table of contents

	Express checkout
	Getting started

	Settings

	PayPal Dashboard

	Not included

	Known issues

	Payflow Pro
	Getting started

	Next steps

	Settings

	Not included

	Using without Oscar

	API

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

Express checkout

PayPal Express is an API for integrating PayPal payments into an ecommerce
site. A typical implementation involves redirecting the user to PayPal’s site
where they enter their shipping and billing information before arriving back on
the merchant site to confirm the order. It can also be used purely for payment,
with shipping details being collected on the merchant site.

Oscar also supports a dashboard for PayPal Express transactions, which
integrates with Oscar’s dashboard.

See the PDF documentation [https://www.paypalobjects.com/webstatic/en_US/developer/docs/pdf/pp_expresscheckout_integrationguide.pdf] for the gory details of PayPal Express.

Getting started

You need to create a PayPal sandbox account which is different from your normal
paypal account then use this account to create two ‘test’ users: a buyer and a
seller. Once the seller is created, you will have access to a
username, password and ‘signature’ which are used to authenticate API
requests.

Add the following settings using the details from your sandbox buyer account:

PAYPAL_API_USERNAME = 'test_xxxx.gmail.com'
PAYPAL_API_PASSWORD = '123456789'
PAYPAL_API_SIGNATURE = '...'

Next, you need to add the PayPal URLs to your URL config. This can be done as
follows:

from django.contrib import admin
from oscar.app import shop

from paypal.express.dashboard.app import application

urlpatterns = [
 url(r'^admin/', admin.site.urls),
 url(r'^checkout/paypal/', include('paypal.express.urls')),
 # Optional
 url(r'^dashboard/paypal/express/', application.urls),
 url(r'', shop.urls),
]

If you are using the dashboard views, extend the dashboard navigation to include
the appropriate links:

from django.utils.translation import ugettext_lazy as _
OSCAR_DASHBOARD_NAVIGATION.append(
 {
 'label': _('PayPal'),
 'icon': 'icon-globe',
 'children': [
 {
 'label': _('Express transactions'),
 'url_name': 'paypal-express-list',
 },
]
 })

Finally, you need to modify oscar’s basket template to include the button that
links to PayPal. This can be done by creating a new template
templates/basket/partials/basket_content.html with content:

{% extends 'oscar/basket/partials/basket_content.html' %}
{% load i18n %}

{% block formactions %}
<div class="form-actions">
 {% if anon_checkout_allowed or request.user.is_authenticated %}

 {% endif %}
 {% trans "Proceed to checkout" %}
</div>
{% endblock %}

Note that we are extending the basket/partials/basket_content.html template
from oscar and overriding the formactions block. For this trick to work,
you need to ensure that you have OSCAR_MAIN_TEMPLATE_DIR in your
TEMPLATE_DIRS after your local templates setting:

from oscar import OSCAR_MAIN_TEMPLATE_DIR
TEMPLATE_DIRS = (
 location('templates'),
 OSCAR_MAIN_TEMPLATE_DIR,
)

If anything is unclear or not workin as expected then review how the ‘sandbox`
installation is set-up. This is a working Oscar install that uses PayPal
Express.

Settings

There’s a smorgasboard of options that can be used, as there’s many ways to
customised the Express Checkout experience. Most of these are handled by simple
settings.

	PAYPAL_SANDBOX_MODE - whether to use PayPal’s sandbox. Defaults to True.

	PAYPAL_CALLBACK_HTTPS - whether to use HTTPS for the callback URLs passed
to PayPal. Defaults to True.

	PAYPAL_CURRENCY - the currency to use for transactions. Defaults to GBP.

	PAYPAL_API_VERSION - the version of API used (defaults to 119)

	PAYPAL_ALLOW_NOTE - whether to allow the customer to enter a note (defaults to True)

	PAYPAL_CUSTOMER_SERVICES_NUMBER - customer services number to display on
the PayPal review page.

	PAYPAL_HEADER_IMG - the absolute path to a header image

	PAYPAL_HEADER_BACK_COLOR - background color (6-char hex value) for header
background

	PAYPAL_HEADER_BORDER_COLOR - background color (6-char hex value) for header border

	PAYPAL_CALLBACK_TIMEOUT - timeout in seconds for the instant update
callback

	PAYPAL_SOLUTION_TYPE - type of checkout flow (‘Sole’ or ‘Mark’)

	PAYPAL_LANDING_PAGE - type of PayPal page to display (‘Billing’ or ‘Login’)

	PAYPAL_BRAND_NAME - a label that overrides the business name in the PayPal
account on the PayPal hosted checkout pages

	PAYPAL_PAGESTYLE - name of the Custom Payment Page Style for payment pages
associated with this button or link

	PAYPAL_PAYFLOW_COLOR - background color (6-char hex value) for the payment page

Some of these options, like the display ones, can be set in your PayPal merchant
profile.

You can also override the raw paypal params by defining a new
paypal.express.views.RedirectView and define the _get_paypal_params
method:

from paypal.express.views import RedirectView as OscarPaypalRedirectView

class RedirectView(OscarPaypalRedirectView):
 def _get_paypal_params(self):
 return {
 'SOLUTIONTYPE': 'Mark',
 'LANDINGPAGE': 'Login',
 'BRANDNAME': 'My Brand name'
 }

Please note that all the dynamic paypal params (e.g. amount, return_url,
cancel_url etc.) cannot be overridden by _get_paypal_params.

PayPal Dashboard

You can view the merchant dashboard in PayPal’s sandbox site by logging in as
the sandbox master user, selecting the test seller account in the ‘Test
Accounts’ tab then clicking ‘Enter sandbox’.

Not included

The following options are part of the PayPal Express API but are not handled
within this implementation - mainly as it’s not obvious how you can handle
these in a ‘generic’ way within Oscar:

	Gift wrapping

	Buyer consent to receive promotional emails

	Survey questions

	User confirming order on PayPal (bypassing review stage)

	Recurring payments

	Fraud management

Known issues

	Vouchers may have expired during the time when the user is on the PayPal site.

Payflow Pro

Payflow Pro is a server-to-server payment option for businesses who have a
merchant account. Unlike Express Checkout, it doesn’t require redirecting the
user to PayPal’s site and allows a customer to use a normal bankcard instead of
their PayPal account. Read more details on the PayPal site [https://www.paypal.com/webapps/mpp/payflow-payment-gateway].

Note

This version of the library was built using the PP_PayflowPro_Guide.pdf
guide found in the docs/guides folder. It is recommended that developers at
least skim-read this guide so that they are familiar with the overall
processes. It also has magic bankcard numbers that can be used for testing.
Find the latest developer docs on the PayPal site [https://developer.paypal.com/docs/classic/products/payflow/].

Getting started

You’ll need to create an Payflow account with PayPal in order to get a:

	Vendor ID

	Username (usually same as vendor ID)

	Password

	Partner ID (normally “PayPal” when you register directly with PayPal)

In practice, you only really need a vendor ID and a password. Add settings to
your project with your credentials:

settings.py
...
PAYPAL_PAYFLOW_VENDOR_ID = 'mypaypalaccount'
PAYPAL_PAYFLOW_PASSWORD = 'asdfasdfasdf'

Next steps

The next steps are to plumb the payment gateway into your checkout and order
processing. There is no one-size-fits-all solution here - your implementation
will depend on your business model.

A good way to start is to browse the sandbox project within the repo - this is a
fully integrated Oscar site.

Note that in an Oscar site, you should only consume the API of the
paypal.payflow.facade module.

For checkout integration, you’ll typically want the PaymentDetailsView in
the following ways:

	Override the get_context_data method to provide a bankcard and billing
address form.

	Override the post method to validate the forms and render them again in
the preview view (but hidden).

	Override the handle_payment method of your checkout’s
PaymentDetailsView to call either the authorize or sale method of
the facade depending on whether you are using one- or two-stage payment
processing.

For general order processing integration, you’ll likely need to adjust your
EventHandler to make calls to the PayPal facade when certain shipping events
occur. For instance, you may call delayed_capture when items ship in order
to capture the funds at that stage.

You can log into your Payflow account to manage transactions under review and
view reports.
https://manager.paypal.com/

Settings

Required settings:

	PAYPAL_PAYFLOW_VENDOR_ID

	Your merchant login ID created when you registered the account with PayPal.

	PAYPAL_PAYFLOW_PASSWORD

	Your merchant password.

Optional settings:

	PAYPAL_PAYFLOW_CURRENCY

	The 3 character currency code to use for transactions. Defaults to ‘USD’.

	PAYPAL_PAYFLOW_USER

	The ID of the user authorised to process transations. If you only have one
user on the account, then this is the same as the VENDOR_ID and there is no
need to specify it.

	PAYPAL_PAYFLOW_PARTNER

	The ID provided by a PayPal reseller. If you created your account directly
with PayPal, then the value to use is "PayPal - this is the default.

	PAYPAL_PAYFLOW_PRODUCTION_MODE

	Whether to use PayPal’s production servers. This defaults to False but
should be set to True in production.

	PAYPAL_PAYFLOW_DASHBOARD_FORMS

	Whether to show forms within the transaction detail page which allow
transactions to be captured, voided or credited. Defaults to False.

Not included

	Recurring billing

	Account verification (TRXTYPE=A)

	Voice authorisation (TRXTYPE=F)

	SWIPE transactions (eg card present)

	Non-referenced credits (eg refunding to an arbitrary bankcard). All refunds
must correspond to a previously settled transaction.

Using without Oscar

To use Payflow Pro without an Oscar install, you need to use the
paypal.payflow.gateway module directly. This module is agnostic of Oscar
and can be used independently.

The paypal.payflow.facade module is a bridging module that provides a
simpler API designed to link Oscar to the gateway module.

API

Facade

Gateway

Contributing

Do this:

mkvirtualenv oscar-paypal
git clone git://github.com/django-oscar/django-oscar-paypal.git
cd django-oscar-paypal
make install

then you should be able to run the tests using:

py.test

There is also a sandbox site for exploring a sample oscar site. Set it up:

make sandbox

and run it:

./manage.py runserver

Use the Github issue tracker [https://github.com/django-oscar/django-oscar-paypal/issues] for any problems.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to django-oscar-paypal’s documentation!

 		
 Express checkout

 		
 Getting started

 		
 Settings

 		
 PayPal Dashboard

 		
 Not included

 		
 Known issues

 		
 Payflow Pro

 		
 Getting started

 		
 Next steps

 		
 Settings

 		
 Not included

 		
 Using without Oscar

 		
 API

 		
 Facade

 		
 Gateway

 		
 Contributing

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

